Short-Term Load Forecasting with an Ensemble Model Based on 1D-UCNN and Bi-LSTM

نویسندگان

چکیده

Short-term load forecasting (STLF), especially for regional aggregate forecasting, is essential in smart grid operation and control. However, the existing CNN-based methods cannot efficiently extract features from electricity load. The reason that basic requirement of using CNNs space invariance, which not satisfied by actual data. In addition, models multi-scale input representing tendency load, resulting a reduction performance. As solution, this paper proposes novel ensemble model, four-stage framework composed feature extraction module, densely connected residual block (DCRB), bidirectional long short-term memory layer (Bi-LSTM), thinking. model first extracts derived raw data module. comprise hourly average temperature features, can capture huge randomness trend characteristics DCRB effectively above compared with models. experiment results show proposed method provide higher performance than models, almost 0.9–3.5%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

An Ensemble Model Based on Machine Learning Methods and Data Preprocessing for Short-Term Electric Load Forecasting

The experience with deregulated electricity market has shown the increasingly important role of short-term electric load forecasting in the energy producing and scheduling. However, because of nonlinear, stochastic and nonstable characteristics associated with the electric load series, it is extremely difficult to precisely forecast the electric load. This paper aims to establish a novel ensemb...

متن کامل

Combination Model for Short-Term Load Forecasting

Gas demand possesses dual property of growing and seasonal fluctuation simultaneously, it makes gas demand variation possess complex nonlinear character. From previous studies know single model for nonlinear problem can’t get good results but accurately gas forecast were essential part of an efficient gas system planning and operation. In recent years, lots of scholar put forward combination mo...

متن کامل

Short - Term Load Forecasting

This paper presents a novel hybrid method for short-term load forecasting. The system comprises of two artificial neural networks (ANN), assembled in a hierarchical order. The first ANN is a multilayer perceptron (MLP) which functions as integrated load predictor (ILP) for the forecasting day. The output of the ILP is then fed to another, more complex MLP, which acts as an hourly load predictor...

متن کامل

Short-Term Load Forecasting Method Based on Fractal Theory

In terms of the present short-term load forecasting(STLF) methods, whether the linear or the nonlinear, neither could meet the STLF requirements better with the rapid developments of electrical power systems and electrical power markets, and so a novel STLF method was proposed based on fractal theory in this paper. Firstly, the paper investigated the fractal characteristics of power system load...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2022

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics11193242